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ABSTRACT. Tannins are polyphenols that are present in various plants, and potentially contain antioxidant properties that 

promote reproduction in animals. This study investigated how tannic acid (TA) affects the reproductive parameters of male 

Brandt’s voles, Lasiopodomys brandtii (Radde, 1861). Specifically, the anti-oxidative level of serum, autophagy in the testis, 

and reproductive physiology were assessed in males treated with TA from the pubertal stage. Compared to the control, 

low dose TA enhanced relative testis and epididymis weight and sperm concentration in the epididymis, and significantly 

increased the level of serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). mRNA levels 

of autophagy related genes LC3 and Beclin1 decreased significantly with low dose TA compared to the control. However, 

compared to the control, high dose TA sharply reduced the levels of serum SOD, GSH-Px, CAT, serum testosterone (T), and 

mRNA level in steroidogenic acute regulatory protein (StAR) in the testis. Both sperm abnormality and mortality increased 

with high dose TA compared to the control and low dose TA. Collectively, this study demonstrated that TA treatment during 

puberty had a dose-dependent effect on the reproductive responses of male Brandt’s voles. TA might mediate autophagy in 

the testis, through both indirect and direct processes. TA mainly affected the reproductive function of male Brandt’s voles 

by regulating anti-oxidative levels. This study advances our understanding of the mechanisms by which tannins influence 

reproduction in herbivores.
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INTRODUCTION

Tannins are a group of naturally occurring polyphenols 
that are widespread in the plant kingdom (Swain 1979), and are 
considered to be plant secondary metabolites (PSMs) because 
they directly contribute to plant metabolic processes (Pepi 
et al. 2009). The phenolic hydroxyl groups of tannins bind 
and inhibit the digestive enzymes of animals, inducing the 
formation of complexes with plant proteins, as well as with 
metal ions, amino acids, and polysaccharides. Because these 
complexes are not readily degraded by the digestive enzymes 
of mammals, tannins might serve as anti-nutritional factors 
in many animals (Chung et al. 1998), adversely affecting the 
digestibility and nutrient absorption of food (Hagerman and 
Klucher 1986, Mehansho et al. 1987). However, tannins also 
have beneficial biological effects. For example, tannins might 
act as antioxidants (Wu et al. 2004, Andrade et al. 2005, Türk 
et al. 2008, Gülçin et al. 2010, Bouki et al. 2013). Tannins also 

promote reproduction in animals (Ramírez-Restrepo and Barry 
2005, Ramírez-Restrepo et al. 2005, Yousef 2005, Yakubu et al. 
2008, Türk et al. 2008). Some researchers have speculated that 
tannins might benefit the reproduction of animals through 
their antioxidative properties (Türk et al. 2008). However, this 
correlation and its mechanism require elucidating. Within the 
antioxidant system, superoxide dismutase (SOD), catalase (CAT), 
and glutathione peroxidase (GSH-Px) are the enzymes that play 
predominant roles in countering the adverse effects of oxidative 
stress (Fridovich 1978, Imre et al. 1984, Hazelton and Lang 1985), 
and are also considered to affect sperm function as a suppressor 
or scavenger of free radicals (Sikka 1996, Vernet et al. 2004).

Autophagy (or programmed cell death type 2), is an evo-
lutionarily conserved mechanism involved in the degradation 
and recycling of misfolded proteins and excess or dysfunctional 
subcellular organelles (Galluzzi et al. 2007). Beclin1 is the mam-
malian autophagy gene, and is important for the localization 
of autophagic proteins to a pre-autophagosomal structure, in 
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addition to being a critical regulator of autophagosome forma-
tion (Kang et al. 2011). LC3 (microtubule-associated protein 1 
light chain 3) is a subfamily of essential proteins that contributes 
to multiple cellular processes, such as autophagy (Shpilka et al. 
2011). In mammalian cells, LC3A is one isoform of LC3 that is 
rapidly cleaved to yield the cytosolic form, LC3-I (Yoshimori 
2004, Li et al. 2011). After the induction of autophagy, LC3-I 
is covalently conjugated to phosphatidylethanolamine to 
form LC3-II (Ishibashi et al. 2011). Then, LC3-II binds tightly 
to pre-autophagosomal, autophagosomal and autolysosomal 
membranes to form a suitable marker for the autophagy pro-
cess (Giatromanolaki et al. 2010). Autophagy is also important 
in the testes, and has been associated with spermatogenesis, 
sperm quality, and the secretion of testosterone (Zhang et al. 
2012, Wang et al. 2014, Herpin et al. 2015). Several studies have 
reported the importance of autophagy in male reproductive 
dysfunction (Lim and Song 2014, Ma et al. 2015). Oxidative 
stress mediates autophagy (Slater et al. 1995, Lee et al. 2012), 
allowing it to scavenge those oxidized proteins and damaged 
mitochondria in organs (Hariharan et al. 2011, Malaviya et al. 
2014). Because tannins have antioxidant properties, we hy-
pothesized that tannins could mediate autophagy in animals.

The Brandt’s vole, Lasiopodomys brandtii (Radde, 1861) 
is abundant in the grasslands of Inner Mongolia, China. It is 
a small, gregarious and, mainly, polygynous, seasonally repro-
ductive mammal (from March to September) (Xie et al. 1994, 
Shi et al. 1999, Wan et al. 2002). It feeds on a wide variety of 
herbaceous monocotyledons and dicotyledons (Wang et al. 
1992). Interestingly, plants favored by Brandt’s voles universally 
contain tannins (Dai et al. 2014, Yin et al. 2017). Furthermore, 
few male Brandt’s voles participate in reproduction during the 
breeding season in which they were born (Ren et al. 2016). The 
mechanism driving this phenomenon remains unclear. In paral-
lel, knowledge about how tannins affect autophagy in Brandt’s 
voles is not known. Thus, Brandt’s vole is an ideal model for 
studying how tannins affect reproduction and autophagy in 
mammalian herbivores.

Puberty is a key period in the reproductive development 
of mammals, with individuals being more susceptible to external 
factors. Here, we investigated the reproductive responses of male 
Brandt’s voles treated with different doses of tannic acid (TA) 
from puberty, with respect to oxidative stress and autophagy, and 
also examined the dose effects of TA on multiple parameters of 
these voles. Specifically, we evaluated the body weight, relative 
testis and epididymis weights, the concentrations of serum 
reproductive hormones, the activity of serum antioxidative 
enzymes (SOD, CAT, and GSH-Px), the quality of sperm, and 
the mRNA levels of autophagy-related genes (Beclin1 and LC3A) 
and steroidogenic acute regulatory protein (StAR), which encode 
key enzymes for testosterone synthesis (Stocco 2001, Payne and 
Hales 2004) in the testis, of Brandt’s voles treated with TA from 
four weeks (pubertal stage) to 8 weeks (adult stage) of age, the 
latter of which is considered the age of sexual maturation in 

Brandt’s voles (Chen et al. 2017). The results are expected to ad-
vance our understanding on the mechanisms that cause tannins 
to influence reproduction in herbivores and the role of plant 
secondary metabolites on regulating herbivore populations.

MATERIAL AND METHODS

Our study was conducted during June-October 2018 at 
college of Bioscience and Biotechnology, Yangzhou University, 
China. Brandt’s voles captured from the grasslands of Inner 
Mongolia were bred as the F0 generation in the animal group 
facility at Yangzhou University, Jiangsu Province, China. Envi-
ronmental conditions were controlled at a temperature of 22 ± 
1 °C, a relative humidity of 50 ± 5%, and a photoperiod of 12 
hours light/12 hours dark (light period extending from 6:00 am 
to 6:00 pm). At 21 days of age, F1 generation male voles were 
weaned and housed separately in polypropylene cages, and were 
allowed to acclimate for another seven days until four weeks 
of age. Each pubertal vole was provided with 10 mL filtered 
tap water and rodent chow (containing 318.65 ± 29.81 μg/g 
tannin) ad libitum during this period. The nutrient contents of 
the rodent chow were as follows: crude protein, ≥18%; crude 
fat, ≥4%; crude fiber, ≥5%; ash, ≤8%; calcium, 1.0%–1.8%; and 
phosphorus, 0.6%–1.2%. Following acclimation, a cohort of 18 
voles was randomly assigned to one of three groups (control, 
low dose, and high dose), with the same number of individuals 
in each group. The experiment lasted for four weeks.

A stock solution (6 mg/mL TA) was prepared by dissolving 
3 g TA (Tianjin Kemiou Chemical Reagent Co., Ltd.) in 500 mL 
filtered tap water, and was stored at 4 °C. On the day of admin-
istration, the stock solution was brought to room temperature 
and diluted 2-fold with filtered tap water to obtain 3 mg/mL TA 
solution. The voles in each group received 10 mL filtered tap 
water (control group), 3 mg/mL TA solution (low dose group), 
and 6 mg/mL TA solution (high dose group), respectively, 
every two days. In the field, the average tannin contents per 
dry weight of the most preferred food plant species – Leymus 
chinensis (Trin.) Tzvel, 1968, Setaria viridis Beauv., 1817, and 
Medicago sativa Linn., 1753 – during the period from May to 
August are approximately between 3 mg/g and 7.5 mg/g (Yin et 
al. 2017). Naturally, pubertal voles probably consume at least 
10 g of dry plant food each day (Wan et al. 2001), and thus, in 
the field, the daily tannin intake of pubertal voles is estimated 
to be between 30 and 75 mg. Accordingly, we established a 
high TA dosage (whereby voles received 30 mg TA per day via 
drinking water), such that voles received the lower limit of 
tannin consumed daily by pubertal voles in the field. Further-
more, the highest amount of tannin in the chow consumed 
by each vole was approximately 3.2 mg/day (in the laboratory, 
the amount of chow consumed daily by each pubertal vole 
was no more than 10 g), and thus, the total intake of tannin 
in the high-dose TA group was estimated to be 33.2 mg/day, 
which is still approximately equivalent to the lower limits of 
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natural tannin consumed by pubertal voles in the field. We 
thus believe that the applied dosage of TA was reasonable and 
approximately reflected the amount of tannin consumed daily 
by pubertal Brandt’s voles under natural conditions. Low TA 
dosage (whereby voles received 15 mg TA per day via drinking 
water) was set to check the dose effects of TA. The day after 
administration, each vole received filtered tap water ad libitum. 
Throughout the experimental period, we ensured that 10 mL 
water or TA solution was consumed by Brandt’s voles on each 
day of administration. Throughout the experiment, all voles 
were provided with standard rodent chow ad libitum.

Voles were weighed every week from four weeks to eight 
weeks in age. At eight weeks in age, all animals were weighed 
and decapitated after anesthetizing with ether. Blood samples 
were collected and kept at 4 °C overnight. Paired testes and 
epididymides were collected and weighed as soon as possible 
using a precision scale balance (± 0.001 g; ML203T/02, Mettler 
Toledo Co., Shanghai, China). Relative testis and epididymis 
weight were calculated as paired testes and epididymides weight 
(g) divided by body weight (g). After weighing, paired testes 
were immersed in RNA preservation liquid, and stored at −20 
°C. The left epididymis was used to detect the concentration, 
mortality, and abnormality rate of sperm. Then, the serum was 
obtained by centrifugation at 3000×g for 30 minutes, and was 
stored at −80 °C. All procedures were approved by the Animal 
Care and Use Committee of the Faculty of Veterinary Medicine 
of Yangzhou University.

All procedures in our experiment were approved by the 
Animal Care and Use Committee of the Faculty of Veterinary 
Medicine of Yangzhou University.

The sequences we cloned have been submitted to 
GenBank as partial mRNA sequence for each gene (accession 
numbers for LC3A and Beclin1 were MK477699 and MK477700, 
respectively).

After weighing, the left epididymis isolated from each vole 
was immediately placed in 2 mL 0.01 M PBS, which had been 
warmed to 37°C. The caudal epididymis was cut open with eye 
scissors to release epididymal fluid. Then, the exuded epididymal 
fluid was incubated for three minutes at 37 °C. A 100 µL volume 
of diluted epididymal fluid was collected for staining using Typan 
Blue Staining Cell Assay Kit (Beyotime, China), according to 
manufacturer’s instructions. A 10 µL solution was placed to a 
hemocytometer to determine sperm concentration and quantify 
the rate of sperm abnormality and mortality under a light micro-

scope (20× objective). In total, 40 µL solution was checked for 
each epididymis. Sperm concentration was expressed in millions 
per mL. Dicephaly, double tails, short tail, microcephalic, and 
megacephalic sperm were defined as abnormal sperm based on 
Hao et al. (2009). A total of 200 sperms were observed per vole.

Serum hormones, were quantified in duplicate using an 
ELISA kit (LianShuo Biological Technology Co., Ltd., Shanghai, 
China), according to the manufacturer’s instructions, and as 
previously reported (Dai et al. 2016). The hormones included 
luteinizing hormone (LH), follicle stimulating hormone (FSH) 
and testosterone (T), and serum anti-oxidative enzymes, namely 
SOD, CAT, and GSH-Px. The purity of all LH, FSH, T, SOD, CAT, 
and GSH-Px standard preparations was >95%. The intra- and 
inter-assay coefficients of variation were <9 and <15%, respec-
tively, for all three hormones and three enzymes.

Total RNA was extracted and stored using the procedure 
established in our previous study (Dai et al. 2016). RNA samples 
of 1 μg were reverse-transcribed using the PrimeScript 1st strand 
cDNA synthesis kit (TaKaRa), following the manufacturer’s 
instructions. Gene expression was measured by qPCR. The 
sequences of qPCR primers for glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), β-actin, and StAR were adopted from 
previous studies (Dai et al. 2016) (Table 1). Microtubule-asso-
ciated protein 1 light chain 3 A (LC3A) and Beclin1 by using 
amino acid sequences from vertebrate animals corresponding to 
LC3A and Beclin1 that were retrieved from the National Center 
for Biotechnology Information (NCBI) database and aligned 
using Clustal X (Larkin et al. 2007). Two degenerate primer pairs 
suitable for cDNA synthesis were designed using j-CODEHOP 
from base-by-base (Rose et al. 1998, Rose et al. 2003, Boyce et al. 
2009). The synthesized cDNA was cloned into pMD18-T vector, 
and sequenced by Sangon Biotech Company (Shanghai, Chi-
na). The sequences were submitted to the GenBank (accession 
numbers for LC3A and Beclin1 were MK477699 and MK477700, 
respectively), and analyzed using the NCBI Primer Blast tool 
to design qPCR primers. The specificity of the primers was 
checked using PCR and the melt curve of qPCR, to ensure that 
no primer dimers or non-specific products were formed (Table 
1). PCR reactions were conducted in a real-time PCR system 
(Applied Biosystems, Foster City, California, USA) using SYBR 
Premix EX Taq II (TaKaRa), as previously described (Dai et al. 
2016). Standard curves were constructed for each gene via serial 
five-fold dilutions of cDNA. Amplification efficiency ranged 
between 0.9 and 1.0, confirming the validity of the comparative 

Table 1. Primers used in the qPCR study.

Forward (5’–3’) Reverse (5’–3’) Reference
LC3A GCTTCGCCGACCGCTGTAA ATCCGTCTTCATCCTTCTCCTG Designed in the present study
Beclin1 GGTCGCTTGCCCAGTGTT ACGGCAACTCCTTAGATT
StAR GGTCCTGCAAAAGATCGGGAA GGCATCTCCCCAAAATGTGTG Dai et al. 2016
β-actin TTGTGCGTGACATCAAAGAG ATGCCAGAAGATTCCATACC
GAPDH TGGCAAAGTGGAGATTGTTGCC AAGATGGTGATGGGCTTCCCG
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quantification method. No amplification was detected in the 
absence of the template or non-RT control. The fold change of 
gene expression was calculated using the 2-∆∆Ct method (Livak 
and Schmittgen 2001), using β-actin (O’Shaughnessy et al. 2002) 
and GAPDH (Xi et al. 2011) as housekeeping genes for testis gene 
expression. The average ∆Ct for the control group was used to 
calibrate each sample.

All variables were tested for normality and homogeneity 
by the Shapiro-Wilk and Levene test, and were transformed 
by log10, when necessary. The effect of TA doses on the body 
mass of voles was evaluated using repeated measures analysis, 
in which body weight on the fourth week was the covariate, 
followed by the least significant difference (LSD) post hoc test. 
The effect of TA on autophagy related gene expression in the 
testis, relative testis weight, expression of StAR in testis, serum 
hormones, serum enzymatic activities, and sperm quality pa-
rameters was determined using one-way analysis of variance 
(ANOVA) followed by the LSD test. Statistical significance was 
determined at p < 0.05. All analyses were performed using SPSS 
16.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

The body weight of voles did not differ significantly 
among the three groups (F2, 32 = 0.574, p = 0.569) (Fig. 1). Rela-
tive testis weight differed significantly among the three groups 
(F2, 15 = 33.200, p < 0.001). Relative testis weight was higher in 
the low dose TA group compared to the control and high dose 
TA groups (p < 0.001, for both comparisons; Fig. 2). Relative 
epididymis weight differed significantly among the three groups 
(F2, 15 = 41.777, p < 0.001). Relative epididymis weight was higher 
in the low dose TA group compared to the control and high dose 
TA groups (p < 0.001, for both comparisons; Fig. 3).

Sperm density differed significantly among the three groups 
(F2, 15 = 5.080, p = 0.021), with the low dose TA group having 
higher sperm density than the control group (p = 0.006) (Fig. 
4). The sperm abnormality rate differed significantly among the 
three groups (F2, 15 = 11.695, p = 0.001), with the high dose TA 
group having higher sperm abnormality rates than the control 
and low dose TA groups (p = 0.003 and p < 0.001, respectively; 
Fig. 5). Sperm mortality rate followed the same trend, and also 
differed significantly among the three groups (F2, 15 = 11.695, p = 
0.001), with the high dose TA group having higher sperm mor-
tality rates than the control and low dose TA groups (p < 0.001, 
for both comparisons). Sperm mortality was also higher in the 
control group compared to the low dose group (p = 0.034) (Fig. 5).

The concentration of serum LH differed significantly 
among the three groups (F2, 15 = 9.370, p = 0.002), with the control 
group having lower serum LH than the low dose and high dose 
TA groups (p = 0.001 and p = 0.015, respectively; Fig. 6). The 
concentration of serum FSH also differed significantly among 

Figure 1. The effect of TA on body weight. The body weight of male 
Lasiopodomys brandtii provided low dose (3 mg/mL) and high dose 
(6 mg/mL) tannic acid (TA) from four weeks of age to eight weeks 
of age. Error bars indicate standard error (n = 6).

Figures 2–3. The effect of TA on the reproductive organ weight. 
Relative testis weight (2) and relative epididymis weight (3) of male 
Lasiopodomys brandtii provided low dose (3 mg/mL) and high dose 
(6 mg/mL) tannic acid (TA). Error bars indicate standard error. Same 
letters connect bars with no significant differences at p < 0.05 (n = 
6). Note: Relative testis and epididymis weight were calculated as 
paired testes and epididymis weight (g) divided by body weight (g).
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the three groups (F2, 15 = 9.511, p = 0.002), with the high dose TA 
group having higher serum FSH than the control and high dose 
TA groups (p = 0.001 and p = 0.014, respectively; Fig. 7). The 

concentration of serum T differed significantly among the three 
groups (F2, 15 = 40.073, p < 0.001), with the high dose TA group 
having lower serum T than the control and low dose groups 

Figure 4–5. The effect of TA on the sperm quality. Sperm density (4), Sperm abnormality rate (5), and Sperm mortality rate (5) in the 
epididymis of male Lasiopodomys brandtii provided low dose (3 mg/mL) and high dose (6 mg/mL) tannic acid (TA). Error bars indicate 
standard error. Same letters connect bars with no significant differences at p < 0.05 (n = 6).

Figure 6–9. The effect of TA on the reproduction-related hormones concentration and StAR expression. Concentrations of luteinizing 
hormone (LH) (6), follicle-stimulating hormone (FSH) (7), and testosterone (T) (8) in the serum and relative mRNA expression levels of 
steroidogenic acute regulatory protein (StAR) (9) in the testes of male Lasiopodomys brandtii provided low dose (3 mg/mL) and high dose 
(6 mg/mL) tannic acid (TA). Error bars indicate standard error. Same letters connect bars with no significant differences at p < 0.05 (n = 6).

Reproductive responses of Brandt’s vole to tannic acid
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(p < 0.001, for both comparisons; Fig. 8). The mRNA level of 
StAR also differed significantly among three treatment groups 
(F2, 15 = 4.222, p = 0.035), with the high dose TA group having 
lower StAR mRNA levels than the control group (p = 0.015) and 
the low dose TA group (p = 0.044) (Fig. 9).

GSH-Px levels in serum differed significantly among the 
three groups (F2, 15 = 40.822, p < 0.001), with the high dose TA 
group having lower GSH-Px activity than the control and low 
dose TA groups (p < 0.001, for both comparisons). Also, GSH-
Px levels were lower in the control group compared to the low 
dose TA group (p = 0.034) (Fig. 10). Serum CAT levels followed 
the same trend, and also differed significantly among the three 
groups (F2, 15 = 24.178, p < 0.001), with the high dose TA group 
having lower CAT levels than the control and low dose TA 
groups (p = 0.006 and p < 0.001, respectively). CAT levels were 
lower the control group compared to the low dose TA group 
(p = 0.028) (Fig. 11). Serum SOD levels differed significantly 
among the three groups (F2, 15 = 10.755, p = 0.001), with the 
high dose TA group having lower SOD levels than the low dose 
TA and control groups (p < 0.001 and p = 0.047, respectively). 
Also, SOD levels were lower in the control group compared to 
the low dose group (p = 0.026) (Fig. 12).

The mRNA level of LC3A differed significantly among the 
three treatment groups (F2, 15 = 12.718, p = 0.001), with the low 
dose TA group having lower LC3A mRNA levels than the control 
group (p = 0.010) and high dose TA group (p < 0.001; Fig. 13). 
The mRNA levels of Beclin1 also differed significantly among 
the three groups (F2, 15 = 10.007, p = 0.002), with the low dose 
TA group having lower Beclin1 mRNA levels than the control 
group (p < 0.001) and high dose TA group (p = 0.015; Fig. 13).

Figure 10–12. The effect of TA on the content of anti-oxidative 
enzymes in serum. GSH-Px (10), CAT (11), and SOD (12) level in 
the serum of male Lasiopodomys brandtii provided low dose (3 mg/
mL) and high dose (6 mg/mL) tannic acid (TA). Error bars indicate 
standard error. Same letters connect bars with no significant differ-
ences at p < 0.05 (n = 6).

Figure 13. The effect of TA on the expression of autophagy-related 
genes. Relative mRNA expression levels of LC3A and Beclin1 in the 
testes of male Lasiopodomys brandtii provided low dose (3 mg/mL) 
and high dose (6 mg/mL) tannic acid (TA). Error bars indicate stan-
dard error. Same letters connect bars with no significant differences 
at p < 0.05 (n = 6).

DISCUSSION

Our study demonstrates that TA significantly affects the 
activity of antioxidative enzymes, sperm quality, reproductive 
organ weight, serum sex hormone, and autophagy in the testis 
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of male Brandt’s voles. Drinking water containing TA for four 
weeks did not have any significant difference on body weight. 
Consistently, Brandt’s voles supplemented with 3% TA in their 
diet for five weeks showed minimal variation in body weight 
to the control (Ye et al. 2016). Feeding 3.3% TA in the diet of 
Brandt’s voles also did not significantly change their body mass 
(Chen et al. 2005b). Similarly, plateau zokors, Eospalax baileyi 
(Thomas, 1911) fed with tannic acid maintained their body 
weight (Lin et al. 2012). Thus, herbivores might have some 
physiological mechanism that allows them to adapt to certain 
doses of TA, allowing them to maintain body mass.

The relative testis and epididymis weight, serum luteiniz-
ing hormone, and the sperm concentration was highest in the 
low dose TA group in this study. Our previous study showed that 
giving tannic acid by intragastric administration increases serum 
T concentrations in plateau pikas, Ochotona curzoniae (Hodgson, 
1858), and root voles, Microtus oeconomus (Pallas, 1776) (Dai et 
al. 2011). Compared to the control, tannins increase epididymal 
sperm concentrations and decrease abnormal sperm rates in rats 
(Türk et al. 2008). However, in the low dose TA group of our 
study, serum testosterone concentrations did not rise, which 
was not consistent with the relative increase in testis weight 
and sperm concentration, along with decrease in sperm abnor-
malities and sperm mortality. The reason for this phenomenon 
needs further research. In comparison, voles in the high-dose 
TA group had the lowest serum T and StAR mRNA levels, but the 
highest levels of both sperm abnormalities and sperm mortality, 
which tends to indicate that a sufficient amount of testosterone 
is vital for normal spermatogenesis (Sharpe 1994, Widyastuti et 
al. 2018). Thus, TA has a dose-dependent effect on the repro-
ductive capability of male Brandt’s voles. The lower dose of TA 
might enhance the development of reproductive organs of male 
Brandt’s voles, whereas the higher dose damages reproductive 
function. Furthermore, both LH and FSH increased in the two 
TA-treated groups, possibly due to the negative feedback effect of 
testosterone on the HPG-axis pathway. Thus, the control group 
had the highest T concentrations.

SOD is mainly responsible for converting superoxide 
radicals to H2O2 and molecular oxygen. H2O2 is converted by 
GSH-Px and CAT into harmless water (Fridovich 1978, Imre et 
al. 1984, Hazelton and Lang 1985). Compared to the control, 
SOD, CAT, and GSH-Px activity in the low dose TA group of the 
current study concomitantly elevated. TA is considered to be a 
natural antioxidant capable of eliminating free radicals (Ye et 
al. 2016). Gallic acid (GA) is a natural hydrolyzed product of 
TA that rapidly and non-enzymatically carries out oxidization 
to generate large quantities of H2O2 in physiological solutions 
(Gil-Longo and González-Vázquez 2010). Concomitant in-
duction of SOD, CAT, and GSH-Px by GA was also detected in 
rats (Hsu and Yen 2007). Therefore, certain doses of TA might 
enhance antioxidative defense and reduce oxidative stress in 
Brandt’s voles. Similarly, CAT and GSH-Px activity increases in 
hepatic cell when adolescent Brandt’s voles are treated with a 

TA diet for five weeks (Ye et al. 2016). Furthermore, tannins in 
pomegranate juice were found to increase the plasma level of 
antioxidant enzymes (CAT and GSH-Px) in male rats (Türk et al. 
2008). However, unexpectedly, in the high dose TA group of our 
study, CAT and GSH-Px activity significantly decreased compared 
to the control. Lower CAT and GSH-Px activity might cause the 
accumulation of excess H2O2, implying higher oxidative stress 
(Aitken and Roman 2008). Thus, the antioxidative effect of TA 
on male Brandt’s voles might be dose-depended, with lower TA 
doses enhancing their ability to combat oxidative stress, while 
higher doses weaken defenses against oxidative stress.

Both spermatogenesis (Peltola et al. 1994) and Leydig cell 
steroidogenesis (Quinn and Payne 1984, Chen et al. 2005a) in 
the testis are vulnerable to oxidative stress. An array of antioxi-
dant enzymes ensures that the spermatogenic and steroidogenic 
functions of testis are not impacted by oxidative stress (Aitken 
and Roman 2008). For example, factors that induce oxidative 
stress, such as the environmental toxicant fluoride (Barbier et 
al. 2010), cause spermatogenic dysfunction in human beings 
and experimental animals (Long et al. 2009). The present study 
showed that the high dose TA group, which had lower SOD, 
CAT, and GSH-Px activity, also had the lowest concentration 
of serum T and StAR mRNA level, as well as the highest rate 
of sperm abnormality and mortality. In comparison, the low 
dose TA group had higher SOD, CAT, and GSH-Px activity, and 
the higher relative testis weight and sperm density, along with 
lower sperm mortality. While the actual levels of SOD, CAT, and 
GSH-Px in the testis were not known in the current study, the 
levels of these anti-oxidative enzymes were detected in serum 
and approximately reflect the anti-oxidative levels of the testis. 
Thus, we concluded that TA influences the spermatogenic and 
steroidogenic functions of the testis of Brandt’s voles by regu-
lating the level of oxidative stress. On the basis of the findings 
of previous studies, in which the authors quantified tannin 
content in the preferred food plants of Brandt’s voles (Yin et 
al. 2017) and investigated the amounts of plant food that voles 
consumed each day (Wan et al. 2001), we assumed that the 
daily tannin intake of pubertal and adult voles in the grasslands 
of Inner Mongolia from May to August probably exceeds that 
administered to voles in the high-dose TA group of the present 
study. In the current study, TA was administered to voles for 
four weeks, from four weeks in age (pubertal stage) to eight 
weeks in age (adult stage). Thus, our results might reflect the 
response of wild male voles to TA that were born in the prox-
imate breeding season. Therefore, reproduction by male voles 
born in the proximate year might be suppressed by secondary 
plant metabolites, which would constrain the size of the vole 
population. Reproduction by male Brandt’s voles born in the 
proximate year is consistently suppressed, whereas male Brandt’s 
voles born in previous years participate in reproduction (Ren et 
al. 2016). Fierce competition among male voles was considered 
to be the reason for this phenomenon (Ren et al. 2016). Our 
study proposed that plant secondary metabolites might also 
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contribute to the reproductive suppression of male Brandt’s vole 
born in the proximate breeding season, besides social factors in 
the vole community.

Compared to the control, the mRNA levels of LC3A and 
Beclin1 significantly decreased in the testis of low dose TA group 
voles in this study. Thus, low dose TA might reduce autophagy 
activity in the testis of adolescent Brandt’s voles, supporting 
our hypothesis that tannins mediate autophagy. The autoph-
agy pathway represents an alternative approach to achieving 
more desirable antioxidative effects, without perturbing the 
redox signaling pathway, through clearing damaged proteins 
and organelles generated by diverse oxidants (Giordano et al. 
2014). Compared to the control, anti-oxidative defense levels 
(level of SOD, CAT, and GSH-Px) of the redox signaling pathway 
were higher in the serum of voles in the low dose TA group, 
which contrasted with the level of autophagic activity in these 
two groups. Thus, the redox signaling pathway and autophagy 
activity complement each other towards maintaining defense 
levels against oxidative stress. Therefore, in the low dose group, 
TA enhanced the activity of components in the redox signaling 
pathway, indirectly reducing autophagy. However, compared 
to the control, the lower antioxidative enzyme activity of the 
high dose TA group did cause autophagy in the testis to increase 
significantly. Oxidative stress mediates autophagy, with high 
oxidative stress promoting autophagy (Slater et al. 1995, Lee 
et al. 2012). Therefore, we speculated that TA also has a direct 
inhibitory effect on autophagy in the testis. Deficient autophagy 
could impair spermatogenesis (Wang et al. 2014). Overall, the 
expected stronger autophagy activity corresponding to lower 
anti-oxidative levels in the high TA group was inhibited by TA. 
This phenomenon resulted in relatively deficient autophagy, and 
contributed to lower spermatogenic and steroidogenic functions 
in the high dose group.

In summary, our study demonstrated that lower doses of 
TA enhance anti-oxidative levels and reduce autophagy in the 
testis, in turn, enhancing the reproductive capability of male 
Brandt’s voles treated with TA from the pubertal stage. In com-
parison, higher dose of TA cause anti-oxidative levels to decrease, 
thus impairing spermatogenic and steroidogenic functions. TA 
might mediate autophagy in the testis through indirectly regulat-
ing anti-oxidative levels and directly inhibiting autophagy. Our 
study showed that TA mainly affects the reproductive function 
of male Brandt’s voles by regulating anti-oxidative levels, with 
the direct effect of TA on autophagy impacting the reproductive 
capacity of Brandt’s voles. Our study provides new insights on 
the mechanism by which plant secondary metabolites affect the 
reproduction of herbivores and how plant secondary metabolites 
regulate herbivore populations.
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