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ABSTRACT. Growing evidence suggests that parasite-infected prey is more vulnerable to predation. However, the mechanism 

underlying this phenomenon is obscure. In small mammals, analgesia induced by environmental stressors is a fundamental 

component of the defensive repertoire, promoting defensive responses. Thus, the reduced analgesia may impair the defensive 

ability of prey and increase their predation risk. This study aimed to determine whether coccidia infection increases the vulner-

ability to predation in root voles, Microtus oeconomus (Pallas, 1776), by decreased analgesia. Herein, a predator stimulus and 

parasitic infection were simulated in the laboratory via a two-level factorial experiment, then, the vole nociceptive responses 

to an aversive thermal stimulus were evaluated. Further, a field experiment was performed to determine the overwinter 

survival of voles with different nociceptive responses via repeated live trapping. The coccidia-infected voles demonstrated 

reduced predator-induced analgesia following exposure to predator odor. Meanwhile, pain-sensitive voles had lower over-

winter survival than pain-inhibited voles in enclosed populations throughout the duration of the experiment. Our findings 

suggest that coccidia infection attenuates predator-induced analgesia, resulting in an increased vulnerability to predation.

KEY WORDS. Analgesic response, coccidian infection, predation effect, small mammal.

INTRODUCTION

In nature, predators and parasites constitute the two pri-
mary extrinsic population regulators and play important roles 
in prey/host population dynamics (Sundell 2006, Tompkins et 
al. 2011). Predation can increase parasite infection by chang-
ing the phenotypic traits of the prey (i.e., morphological and 
physio logic traits) (Duffy et al. 2011, Caetano et al. 2014,Shang 
et al. 2019). In turn, increased parasite infection results in hosts 
vulnerability to predation (Carreon and Faulkes 2014, Shang et 
al. 2019, Gooding et al. 2020). For example, Møller and Nielsen 
(2007) showed that prey species with high malaria prevalence 
have higher predation risk than those with a low prevalence. 
Moose, Alces alces (Linnaeus, 1758), and voles, Microtus townsen-
dii (Bachman, 1839), are very different in size, but both are more 
prone to predation when they have heavy parasite burden (Steen 
et al. 2002, Joly and Messier 2004). Several possible mechanisms 

for the synergistic effects of parasites and predators on host/prey 
mortality have been proposed, such as deteriorated body condi-
tion (Wirsing et al. 2002, Hoey and McCormick 2004), reduced 
escape ability (Alzaga et al. 2008), and increased metabolism 
and energy output (Haye and Ojeda 1998, Krams et al. 2013). 
However, the underlying mechanism by which parasite-infected 
prey are more vulnerable to predation is obscure.

Animals respond to the threat of predation via a series of 
defensive responses, including flight, freezing, risk assessment, 
increased alertness and fear, or analgesia (Lima and Dill 1990, 
Kavaliers and Colwell 1994). In small mammals, analgesia induced 
by environmental stress factors is a fundamental component of 
the defensive repertoire, promoting the coordinated expression of 
other defensive behaviors (Colwell and Kavaliers 1993, Caio 2011). 
Thus, the decreased analgesia may impair the defensive ability of 
small mammals and then increase their vulnerability to predation 
(Ives and Dobson 1987, Tambeli et al. 2012, Lamana et al. 2018).
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Experimental evidence from laboratory has shown that 
predator or predator cues could activate the analgesic system in 
mice and rats (Kavaliers and Colwell 1991, 1994). Meanwhile, 
endoparasitic infections such as coccidia or nematodes reduce 
this analgesia when the rodents are exposed to predator stimuli 
(Kavaliers et al. 2000). Notably, most studies on nociceptive res-
ponses have been performed on mice and rats under laboratory 
conditions. Whether parasitic infections decrease analgesia in 
wild rodents exposed to predators and if this affects their popu-
lation survival remains unclear.

Our previous study showed that the combined effects 
of coccidia infection and predators decrease the overwinter 
survival of root voles, Microtus oeconomus (Pallas, 1776) (Shang 
et al. 2019). Coccidia are the most prevalent parasites in root 
voles (Cao et al. 2014, Nie et al. 2014). The current study aims 
to evaluate whether coccidia infection increases the predation 
vulnerability of root voles via decreased analgesia. This work 
builds on the previous (Shang et al. 2019) to test two hypothe-
ses: 1) coccidia infection reduces predator-induced analgesia 
in root voles; 2) individuals with reduced analgesia have lower 
overwinter survival.

MATERIAL AND METHODS

Statement of animal right

The use of animals in this study was in accordance with 
the guidelines of the regulations of experiments on animals and 
was approved by the animal Ethics and Welfare committee of 
the Northwest Institute of Plateau Biology, Chinese Academy 
of Science.

Laboratory experiments

The laboratory experiments were conducted at the 
Northwest Institute of Plateau Biology, Chinese Academy of 
Sciences, Xining, China. Root voles were housed singly in clear 
polyethylene cages (36 × 20 × 17 cm3) with wood shavings and 
maintained at 20 ± 2 °C under a 12:12 h light: dark cycle. Food 
and water were availed ad libitum. Twenty voles, six months and 
older, of each sex from a laboratory colony were divided into 
two groups: coccidia-infected (hereafter PA+) and parasite-free 
groups (hereafter PA-). Half of the PA+ and PA- groups were 
exposed to predator odor (hereafter PR+PA+ or PR+PA-), and 
the other half to a control odor (hereafter PR-PA+ or PR-PA-). 
Each of the four treatments involved five voles per sex, and 
the initial vole body mass of the four treatments did not differ 
(F3,36 = 0.187, p = 0.904).

Parasite infection

Voles in the PA+ group were once orally administered with 
2000 coccidia oocysts suspended in 0.1 mL distilled water on 
June 3rd, 2019. Their oocyte levels were comparable to the oocysts 
per gram in the feces of coccidia-infected root voles studied by 
Shang et al. (2019). Meanwhile, each vole in the PA- group was 
treated with a single orogastric gavage dose of 0.1 mL combina-

torial anthelmintic comprising 6.25 × 10-4 mL diclazuril solution 
(Weierkong, Sichuan) and a 2 mg ivermectin tablet (Weierkong). 
Combinatorial anthelmintics can effectively expel nematodes, 
cestodes, and coccidia (Yang et al. 2018).

Our pilot study found that the latency period for coccidia 
infection in root voles was 6–7 days, and the maximum oocyst 
output occurred 9–10 days post-infection. Accordingly, we mea-
sured nociceptive responses on June 13th, 2019.

Predator odor exposure

Voles were exposed to predator or control odors on June 
4–13th, 2019. Silver fox, Vulpes vulpes (Linnaeus, 1758), odor 
was used to stimulate predation risk, while the rabbit odor, 
Oryctolagus cuniculus f. domesticus (Linnaeus, 1758) was used 
as control (Wang and Liu 2002a, Bian et al. 2005b). Since the 
major predators in the study area – Buteo hemilasius Temminck 
& Schlegel, 1844 or Mustela altaica Pallas, 1811 – are protected 
animals in China, capturing and collecting fresh feces and urine 
for 15 consecutive days was challenging. Wang and Liu (2002a, 
2002b) found that the silver fox odor could change the behav-
ioral responses of root voles. Thus, our study used silver foxes 
for predator stimulation instead of natural predators.

Fresh silver fox and rabbit feces and urine were collected 
in trays under the animal cages daily. Each tray was washed 
with 500 mL distilled water, and the washing water strained 
through a filter with a 100 mesh screen (Bian et al. 2005a). Fil-
tered solutions from each animal species collected at different 
times were thoroughly mixed. At the onset of the laboratory 
experiment, filter papers infused with predator or control odors 
were randomly placed in the vole cages three to four times a day 
between 8:00 am and 11:00 pm. This period was chosen because 
root voles are primarily diurnal (Sun et al. 1982). Each exposure 
to predator or control odor lasted 30–60 s.

Nociceptive responses

The nociceptive responses of voles were measured on June 
3rd, 2019, prior to parasitic infection. The initial nociceptive res-
ponse latency did not differ among voles in the four treatments 
(F3,36 = 0.165, p = 0.919). Nociception was measured based on 
the latency of foot-lifting or licking responses to an aversive 
thermal stimulus (“hot plate,” CAT.NO.T-91-S, CT, USA). Each 
measurement was replicated thrice in each individual. The 
individual was immediately removed from the heated surface 
following the response display and returned to its cage. If no 
response was observed within 60 s, the test was terminated, 
and the vole returned to its cage (Kavaliers and Colwell 1994). 
In the present study, all voles displayed nociceptive responses 
within 60 s.

Field experiments

Field experiments were conducted at the Haibei Alpine 
Meadow Ecosystem Research Station, Menyuan County, appro-
ximately 155 km north of Xining, Qinghai Province, China 
(37°37’N, 101°12’E). The station has an elevation of 3200 m, 
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is surrounded by mountains, and has an average annual tem-
perature and precipitation of -1.6 °C and 560 mm, respectively 
(Li et al. 2004).

Root vole populations in this area fluctuate annually, 
usually with relatively low numbers in late winter and spring, 
increasing throughout the breeding season, and declining after 
the breeding season; multi-year cycles are weak or absent (Jiang 
et al. 1991). In this study area, root voles prefer dense vegetation, 
mainly Elymus nutans (Poaceae), in habitat selection. The average 
population in the habitat ranged from 217 to 280 voles ha-1 in 
autumn, even up to 400 ha-1 where grazing activities were limited 
(Bian et al. 1994, Sun et al. 2002). The breeding season typically 
lasts from April to October. Juveniles reach puberty and breeding 
age at approximately 50 and 70 days, respectively (Liang et al. 
1982). The primary predators in the study area are falcons, Falco 
tinnunculus Linnaeus, 1758, buzzards, Buteo hemilasius Temminck 
& Schlegel, 1844, and weasels, Mustela altaica Pallas, 1811.

Experimental facility

The field experiments were carried out in four 0.15 ha 
(50 × 30 m) outdoor enclosures located in an old E. nutans 
meadow. Major plants included E. nutans, Poa spp., Thalictrum 
alpinum, and Kobresia humilis. The vegetative cover provided 
a dense leaf layer, forming a natural refuge for root voles. The 
enclosures were constructed using galvanized steel panels (1.5 
and 0.5 m above and below ground, respectively) but without 
wire mesh roofs. Further, the enclosures had a series of low 
panels (~0.3 m high) along the exterior walls every 10 m, al-
lowing terrestrial and avian predators to enter but prevented 
voles from exiting the enclosures. The vegetation conditions 
are similar in each enclosure. Each enclosure was equipped with 
60 laboratory-made wooden traps (Bian et al. 2011), spaced in 
5 × 5 m grids.

Founder populations

Forty-eight voles of each sex, six months or older, from a 
laboratory colony were used to establish founder populations on 
October 16, 2017. The voles were divided into two nociception 
levels according to thermal response latency (“hot plate,” CAT.
NO.T-91-S, CT, USA); high response latency group (hereafter 
group H; 53.92 ± 0.11) and low response latency group (here-
after group L; 49.3 ± 0.09). The nociceptive response latency of 
group H was significantly higher than group L (F1,94 = 1011.93, p 
< 0.001). Earmarked voles from group H were released into two 
enclosures, while earmarked voles from group L were released 
into the other two enclosures. Each enclosure contained 12 
voles per sex, and each treatment was conducted in duplicate. 
The density of the founder population (160 voles ha-1) was in 
line with natural densities in autumn (Bian et al. 1994, Sun et 
al. 2002).

Prior to the experiment, all voles were treated with a 
combinatorial anthelmintic to eliminate parasites and ensure 
homogeneity. Besides, all enclosures were trapped for two 
weeks to remove small resident mammals. We also ensured the 

initial vole body mass did not differ between the enclosures 
(F1,94 = 0.004, p = 0.95).

Vole trapping

Live trapping began on October 28th, 2017, after the voles 
had acclimated to the enclosures for two weeks, and lasted for 
141 days (at the end of March 17th, 2018). Standard capture-re-
cord-recapture methods were used throughout the present 
study. Six trapping sessions were conducted, each consisting of 
three trapping days. The time interval between two trapping 
sessions was approximately one month. Each trap was baited 
with carrots, set between 8:00 am and 5:30 pm, checked every 
two hours and closed when trapping did not occur. Following 
capture, the individual was identified and their sex recorded.

Survival rate and population size estimations

We estimated the apparent survival (hereafter “survival”) 
and recapture probability (hereafter “recapture”) using the stan-
dard open population Cormack-Jolly-Seber model (Lebreton et 
al. 1992) in the MARK program (White and Burnham 1999). The 
recapture probability was evaluated under the assumption that 
the individual was alive and in the sample (Cooch and White 
2006). The data comprised a capture history of 96 voles in six 
trapping sessions from October 28th, 2017, to March 17th, 2018. 
First, RELEASE in the MARK program was used to conduct a good-
ness-of-fit test for the global models, namely ΦTR × T, with both 
vole survival and recapture dependent on treatment, “TR,” and 
time, “T.” The goodness-of-fit of the global model was assessed 
by testing the assumptions of independence and homogeneity 
of individuals in the enclosures. The goodness-of-fit tests were 
not significant for voles (tests 2 and 3, RELEASE: χ2 = 12.64, 
df = 18, p = 0.81), suggesting that voles in the enclosures were 
independent and that the model fits were acceptable. We then 
used a bootstrap-based goodness-of-fit test to estimate the c-hat 
value (a variance inflation factor; 1.92), which was adjusted to 
1.92 in the global models.

Second, we selected the models as described in our previ-
ous study (Yang et al. 2018). Briefly, parsimonious models were 
selected based on the QAICc values, which allows a compromise 
between bias and precision when the global model does not 
fit the data (Anderson et al. 1994) and incorporates a variance 
inflation factor. Third, we tested the hypothesis that nociception 
influences vole overwinter survival. For the test, a parsimoni-
ous model containing the treatment factor was compared with 
neighboring populations without the factor, using QAICc values. 
Subsequently, the model average was estimated from the mean 
monthly apparent survival probability.

We used the minimum number known alive method to 
estimate population sizes across trapping sessions in each enclo-
sure. Mark-recapture sampling trials of known populations in the 
enclosures showed that the minimum number known alive was 
the best estimate of the actual population size relative to other 
estimators (Chambers et al. 1999, Bian et al. 2011). The rate of 
population change for each enclosure was calculated using the 
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following equation: rt = (1/T) ln (Nt+1/Nt), where Nt is the popu-
lation density at time t, Nt+1 is the population density during 
the subsequent trapping session, i.e., at time t +1, while T is the 
time interval between trapping sessions (Klemola et al. 2002).

Statistical analysis

The vole population size (Poisson distribution) was ana-
lyzed using generalized linear mixed models, with log link 
functions in the SPSS v. 20 program (IBM, Armonk, NY, USA). 
Continuous variables were analyzed using a linear model. Data 
sampled repeatedly were analyzed using the repeated measures 
method, and all models were simplified by eliminating non-sig-
nificant (p > 0.05) interactions. Post hoc comparisons of signifi-
cant effects were computed using the sequential Bonferroni post 
hoc procedure.

In the analyses of nociceptive responses, treatments were 
input into the models as fixed factors, and individual IDs were 
put as the random factors. In the analyses of population change 
rate and density, treatments and trapping sessions were input as 
fixed factors to test the primary and interaction effects separately. 
Meanwhile, enclosures were input as random factors. Since no 
sex differences were found for any parameter, the data for males 
and females were pooled during analyses.

RESULTS

Laboratory experiments

We found an effect of treatment on vole nociceptive 
responses (F3,34 = 8.89, p < 0.001). Compared with uninfected 
voles exposed to the control odor (50.70 ± 0.41; range from 
49.07 to 53.7), uninfected voles exposed to the predator odor 
had increased nociceptive latencies (53.65 ± 0.41; range from 
51.73 to 55.77), indicating the induction of analgesia (PR-PA- vs. 
PR+PA-, p < 0.001). However, the response latencies of infected 
voles after exposure to the predator odor (52.11 ± 0.41; range 
from 51.40 to 53.23) were lower than those of uninfected voles 
(PR+PA+ vs. PR+PA-, p < 0.05; Fig. 1). Thus, coccidia infection 
altered the vole response to predator odor.

Field experiments

Among the various models describing survival, model 1, 
2 and 3 were parsimonious models (Table 1). The differences 
of QAICc value between models 1, 2 and 3 are less than 2 (the 
differences between model 1 and 2, 3 is 0.11 and 1.71, respec-
tively), thus these models are considered equally valid models. 
The model 1, 2 and 3 included the effect of time, treatment and 
interaction between time and treatment, indicating that time 
and treatment affected vole overwinter survival (Table 1). The 
average overwinter survival rates in group H and group L were 
0.772 ± 0.01 and 0.755 ± 0.01, respectively (Fig. 2).

The population change rate was affected by time 
(F5,12 = 10.277, p < 0.05) and the interaction between time and 
treatment (F5,12 = 0.785, p < 0.05). However, no effect of treat-
ment alone was found (F1,12 = 0.06, p = 0.81), indicating that only 

Table 1. Best model structures for modeling survival of the root vole population. The model with the lowest QAICc is reported for the 
first time. The model structure for recapture remained the best model {P(TR + TR . S + TR . T)}. The effect of treatment is abbreviated TR; 
time effect, T; sex effect, S. The main effects are symbolized by a plus sign (+) and specific interactions are symbolized by a dot (.), and 
models including all combinations of additive and interaction effects are represent by an asterisk (*).

Model number Model Number of parameters QAICc QAICc weight QDeviance

General models 1 Ф T + TR . T 12 237.91 0.3696 56.26

2 Ф T 10 238.02 0.3494 61.06

3 Ф TR + T + TR . T 13 239.62 0.1573 55.57

4 Ф TR + S + T + TR . T 14 241.96 0.0488 55.47

Global models 5 Ф TR * T * S 27 269.26 0 47.52

Figure 1. Vole nociceptive latencies among the four treatments. 
N=10, 10, 10 and 10 for the PR+PA+, PR+PA-, PR-PA+ and PR-PA- 
groups, respectively. Different letters represent significant difference 
between four treatments (p < 0.05). Data were expressed as the 
mean ± SE.
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time and its interaction with the treatment affected population 
change rate. The average population change rates in the group 
H and group L were -0.008 ± 0.01 and -0.012 ± 0.01, respectively 
(Fig. 3). Meanwhile, the population density was affected by time 
(F5,12 = 53.203, p < 0.001) and treatment (F1,12 = 14.735, p < 0.05), 
but not the interaction between time and treatment (F5,12 = 0.736, 
p = 0.611). The group L vole populations demonstrated a higher 
density than group H (p < 0.05). Although the former had a 23.7 
% higher density than the latter during the adaptive phase (the 
first 13 days), its population declined sharply to a size similar 
to group H at the end of the experiments (March 2018, Fig. 4).

DISCUSSION

The primary finding of this research was that coccidian 
infection in voles reduces analgesia induced by predator risk, 
resulting in a lower overwinter survival in root voles.

In small mammals, analgesia can promote defensive res-
ponses to stimuli and is advantageous in real-time or potentially 
dangerous situations (Kavaliers 1988, Rodgers 1995, Kavaliers 
et al. 2000). Laboratory studies have shown that mice and rats 
display analgesic response when exposed to predator or predator 
odors (Kavaliers 1990, Rebecca 2003). For instance, Furuya-da-
Cunha et al. (2016) found that mice reduce pain reactivity when 
exposed to predators. However, parasitic infections in mice 
reduce the analgesia following exposure to predators (Kavaliers 
et al. 1997). Our results supported our first hypothesis that 
coccidia infection reduces predator-induced analgesia in root 
voles. To our knowledge, the present study is the first to test 
this hypothesis in wild rodents.

Although various reports have highlighted the positive 
role of analgesia induced by stress in animal defense responses 
(Amit and Galina 1986, Butler and Finn 2009, Thomson et al. 
2020), the causal correlation between nociception and survival at 
the population level is obscure. Our study is the first to exami ne 
whether nociceptive responses affect the overwinter survival of 
small mammal populations. We found that pain-sensitive voles 
have lower overwinter survival than pain-inhibited voles. Firstly, 
the average overwinter survival rate of pain-sensitive voles was 
lower than it of pain-inhibited voles. Secondly, some pain-in-
hibited voles died during the two weeks of acclimatization 
(October 16–28th, 2017) prior to the mark-recapture experiment. 
Subsequently, the population of pain-sensitive voles had a high-
er density than pain-inhibited voles during the first trapping 
session. However, the population of pain-sensitive populations 
declined sharply at the end of the experiment (March 17th, 2018) 
to a size comparable to that of the pain-inhibited populations. 
This result indicates that pain-sensitive voles had lower survi-
val throughout the experiment, which last approximately five 
months. Finally, the pain-sensitive voles had a higher population 
change rate than pain-inhibited voles. Root voles do not breed 
in winter (Liang et al. 1982) and were prevented from entering 
or leaving the enclosures throughout the experimental period. 

Thus, the higher population change rate of pain-sensitive voles 
was only due to lower overwinter survival. These findings sup-
port our second hypothesis that voles with reduced analgesia 
have lower overwinter survival.

Figures 2–4. Monthly apparent survival probability (2), population 
change rate (3) and population size (4) of root voles during the 
live-trapping sessions under two different groups. H signifies that 
root voles with high thermal responses latency; L signifies that root 
voles with low thermal responses latency. n = 48 and 48 for H and 
L groups. Data were expressed as the mean ± SE.

4

3

2

Analgesia and overwinter survival in root voles

ZOOLOGIA 38: e67845 | https://doi.org/10.3897/zoologia.38.e67845 | July 7, 2021 5 / 9



Numerous studies have found that extrinsic factors, in-
cluding parasites (Ryberg et al. 2020), predators (Sheriff et al. 
2020), climate (Rödel et al. 2004), and food (Pedersen and Greives 
2008), can directly or indirectly affect animal mortality. In our 
field experiments, parasites are removed in both treatments, and 
food and climatic conditions are consistent in all four enclosures. 
Moreover, some laboratory studies have shown that increased 
analgesia can enhance the anti-predator responses, increasing 
the survival probability (Ornstein and Shimon 1981, Lichtman 
and Fanselow 1990, Tambeli et al. 2012). For instance, preda-
tor-induced analgesia promoted anti-predator behaviors in mice, 
which decreased mortality when exposed to cats (Ornstein and 
Shimon 1981). Notably, voles prefer routes with higher vegetation 
cover to avoid predation risk (Merken et al. 1991, Taraborelli et al. 
2008). In this study, vegetation cover was low in winter, which 
may have enhanced predation risk by decreasing natural shelter. 
Therefore, in the present study, the lower survival of voles with 
reduced analgesia was due to the increased vulnerability to pred-
ator, which may relate to the decreased anti-predator behaviors.

Growing evidence suggests that predators and parasites 
can have non-additive effects on a shared group of prey or hosts, 
which can influence the population dynamics (Ramirez and 
Snyder 2009, KrkoŠek et al. 2011, Duffy et al. 2011, Marino and 
Werner 2013). Shang et al. (2019) found that predators increase 
both the prevalence and intensity of coccidian infection in voles 
through immune suppression induced by predation stress. Mean-
while, the increased coccidia infection increases the predation 
risk, reducing the overwinter survival and population density of 
voles. The number of individuals present at the beginning of the 
spring breeding period depends on overwinter survival. Thus, the 
reduced overwinter survival plays a key crucial role in subsequent 
population fluctuations (Shang et al. 2020). The present study 
provides possible insights on how coccidia infection increases 
the infection vulnerability of root voles. We demonstrate that 
coccidian infection attenuates predator-induced analgesia, and 
the reduced analgesia increases the susceptibility to predation.
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