Latest Articles from Zoologia Latest 2 Articles from Zoologia https://zoologia.pensoft.net/ Fri, 29 Mar 2024 14:25:36 +0200 Pensoft FeedCreator https://zoologia.pensoft.net/i/logo.jpg Latest Articles from Zoologia https://zoologia.pensoft.net/ Sexual and reproductive traits of the pearl oyster shrimp Pontonia margarita (Decapoda: Palemonidae), symbiotically inhabiting the mantle cavity of the rugose pen shell Pinna rugosa (Bivalvia: Pinnidae) https://zoologia.pensoft.net/article/29774/ Zoologia 36: 1-7

DOI: 10.3897/zoologia.36.e29774

Authors: Diego García-Ulloa, Victor Landa-Jaime, Andres Martín Góngora-Gómez, Manuel García-Ulloa, Jaun Antonio Hernández-Sepúlveda

Abstract: Symbiosis between decapods and mollusks provides a unique opportunity to examine some of the evolutionary strategies employed by marine invertebrates. We describe the sexual and reproductive traits of the pearl oyster shrimp, Pontonia margarita Verril, 1869, found symbiotically inhabiting the mantle cavity of the rugose pen shell, Pinna rugosa Sowerby, 1835. Solitary males and females (ovigerous and non-ovigerous) and heterosexual pairs (with ovigerous and non-ovigerous females) were found in a total of 47 rugose pen shells collected from a sandy area with seagrass meadows on the southeastern coast of the Gulf of California, Mexico. The body length (BL) of female P. margarita was correlated with the shell volume of their rugose pen shell host. The sex ratio was female-biased (0.85M:1F). Female P. margarita were larger than their male counterparts in terms of BL, cephalothorax length (CL), and the maximum chelae length of the second pereopod (MCL). The CL and MCL were more strongly correlated for males (r = 0.70, p = 0.01). The number and volume of eggs per ovigerous female varied from 95 to 1,571 and from 5.46 ± 0.48 to 8.85 ± 0.97 mm3, respectively. Our results indicate polygamous behavior and social monogamy among P. margarita, and a short-term pairing system for their association with P. rugosa.

HTML

XML

PDF

]]>
Research Article Thu, 6 Jun 2019 22:05:28 +0300
Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae), a recent freshwater colonizer https://zoologia.pensoft.net/article/20173/ Zoologia 34: 1-9

DOI: 10.3897/zoologia.34.e20173

Authors: Carolina Arruda Freire, Leonardo de P. Rios, Eloísa P. Giareta, Giovanna C. Castellano

Abstract: Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya) invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836) dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu) and experimental salinities (10, 20, 30 psu), for four and eight hours (n = 8 in each group). The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO), ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimp’s hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC). Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50%) and MWC decreased (~4%) at 30 psu. The expected reduction in oxygen consumption was not observed. This shrimp is able to tolerate significant changes in water salt concentrations for a few hours by keeping its metabolism in aerobic mode, and putatively shutting down branchial salt uptake to avoid massive salt load, thus remaining strongly hyposmotic. Aerobic metabolism may be involved in the maintainance of cell volume, concomitant with reduced protein/aminoacid catabolism upon increase in salinity. More studies should be conducted to broaden our knowledge on palaemonid hyporegulation.

HTML

XML

PDF

]]>
Research Article Fri, 1 Sep 2017 15:17:18 +0300